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A B S T R A C T

At the moment, urban mobility research and governmental initiatives are mostly focused
on motor-related issues, e.g. the problems of congestion and pollution. And yet, we cannot
disregard the most vulnerable elements in the urban landscape: pedestrians, exposed to higher
risks than other road users. Indeed, safe, accessible, and sustainable transport systems in cities
are a core target of the UN’s 2030 Agenda. Thus, there is an opportunity to apply advanced
computational tools to the problem of traffic safety, in regards especially to pedestrians, who
have been often overlooked in the past. This paper combines public data sources, large-scale
street imagery and computer vision techniques to approach pedestrian and vehicle safety with
an automated, relatively simple, and universally-applicable data-processing scheme. The steps
involved in this pipeline include the adaptation and training of a Residual Convolutional Neural
Network to determine a hazard index for each given urban scene, as well as an interpretability
analysis based on image segmentation and class activation mapping on those same images.
Combined, the outcome of this computational approach is a fine-grained map of hazard levels
across a city, and an heuristic to identify interventions that might simultaneously improve
pedestrian and vehicle safety. The proposed framework should be taken as a complement to
the work of urban planners and public authorities.

1. Introduction

In the last century, the accelerated growth of urban areas has given rise to challenges at a variety of levels. Among these, mobility
stands out. The ability to efficiently move people and goods is critical to a city’s social and economic success (De Domenico et al.,
2014; Jiang et al., 2016; Abbar et al., 2018). It is unsurprising, then, the enormous amount of economic and engineering effort that
urban planners have devoted to enhance the efficiency of road networks, bus lines, and metro systems (Gakenheimer, 1999). Unlike
transportation modes that operate in exclusive spaces, such as metro lines, the uncontrolled rise in urban automotive mobility has
gone hand in hand with the degradation of other modes of transportation. Of all these alternative modes, walking has suffered the
most, due in large part to the fact that the amount of the streetscape allotted to vehicles invades and interferes with the pedestrian
space. Nevertheless, cities exhibit a growing tendency to stop and reverse this process by fostering more active, citizen-friendly
transportation modes — foot, bike and personal mobility vehicles, which compete for this public space (Cervero and Duncan, 2003).
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Fig. 1. Accident distribution in Barcelona. Relative concentration of accidents by type (vehicle-to-pedestrian, vehicle-to-vehicle).

One logical consequence of this paradigm shift, is the increased level of interaction between pedestrians and motor vehicles,
largely due to the overlapping use of common (or adjacent) spaces such as roads, sidewalks, and zebra-crossings. Such increase
gives rise to an important, negative side-effect: a growth in pedestrian injuries and fatalities. Data from the National Highway
Traffic Safety Administration (NHTSA) of the United States indicate that the number of pedestrian fatalities per year is rising in the
U.S. (National Highway Traffic Safety Administration, 2018). After a steady decline from the mid-1990’s to a low in 2009, there
has been a clear and consistent reversal until 2017 (the last year of available data), when pedestrian fatalities surpassed a previous
23-year high in 1995.

Traditionally, pedestrian safety research has focused on the impact of structural factors (e.g. road lanes Ukkusuri et al., 2012,
traffic network structure Rifaat et al., 2011; Moeinaddini et al., 2014, existence of direct line-of-sight between objects Mecredy
et al., 2012; Fu et al., 2019, etc.). In addition, socio-behavioral factors may be concomitant, e.g. the change of individual behavior
related to the use of new, distraction-causing technologies (Nasar et al., 2008), inside and outside of vehicles, which is not likely
to diminish in the future. Also, demographic variables (socio-economic status, race, gender) may play a role as well (Mukoko and
Pulugurtha, 2019). Nonetheless, crashes that involve motor vehicles and pedestrians are understudied, and, at the micro level, much
less so outside intersections (Hu et al., 2018).

An enlightening example, built upon real accident data, is shown in Fig. 1. Quite clear even to the naked eye, accidents involving
vehicles may happen throughout a city. However, when a distinction is introduced (vehicle-to-vehicle vs. vehicle-to-pedestrian), the
spatial patterns where these accidents occur are mostly non-overlapping, suggesting that the configuration of the public space – the
scene where the accident happens – matters, see as well Figure S1 in the Supplementary Information (SI). All in all, the strategies
for the safe coexistence of pedestrians and vehicles demand a separate and careful examination.

The combination of increasingly available street-level imagery sources and city open data portals, together with advances in the
field of computer vision and larger training datasets (Zhou et al., 2014, 2017), has opened up promising new opportunities for facing
challenges in urban science. Examples include the quantification of physical change and pattern identification in cities (Naik et al.,
2017; Albert et al., 2017; Seiferling et al., 2017), road safety assessment (Song et al., 2018), the prediction of human-perceived
features of street scenes (Naik et al., 2014; Liu et al., 2017), the automated estimation of demographic variables across the United
States (Gebru et al., 2017) and Great Britain (Suel et al., 2019), or the beautification of urban images through the generation of
prototypes (Kauer et al., 2018). Turning to transportation research, however, computer vision has focused mostly on traffic control
and surveillance (Fadlullah et al., 2017), and automatic detection and collision prevention (Zhang et al., 2016a,?) for autonomous
vehicles. Outside scene analysis, the Deep Learning paradigm has been exploited mostly on motor traffic (Polson and Sokolov, 2017;
Wu et al., 2018; Zhang et al., 2018; Wang et al., 2019; Zhang et al., 2019), so far leaving aside its potential to tackle pedestrian
safety.
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Here, we address the complexities of vehicle-to-pedestrian interaction combining the structural (scene elements) and perceptual
scene composition) aspects of the problem. Overall, the contributions of the present work can be summarized as follows:

1. Creating a dataset of urban street-level images labeled according to accidentality, based on open data municipal accident
records.

2. Developing a deep learning architecture, adapted from Deep Residual Networks (ResNet), for hazard index estimation in urban
images, that works for both pedestrian and vehicle accidents, and is capable of producing city-wide hazard level landscapes
at an unprecedented resolution of one value every 15–20 m.

3. Proposing a set of interpretability analyses to extract human meaning from the outputs of the classification, through
customized implementations of Pyramid Scene Parsing networks (PSPNet), Gradient-weighted class activation mapping
(GradCam++), radar plots, and a new measure of scene disorder.

4. Designing a greedy heuristic to propose realistic urban interventions, based on scene segmentation, class activation mapping
and k-nn algorithm, which constitutes an informed guide for planners to pedestrian safety improvements.

aken together, these points constitute a novel and comprehensive deep learning pipeline for estimating vehicle and pedestrian
azard in urban scenes, and recommending feasible physical improvements to make those same scenes safer. The building blocks of
he pipeline are tailored variants of different state-of-the-art deep learning/machine learning models and techniques (Deep Residual
etworks (ResNet), Pyramid Scene Parsing network (PSPNet), Gradient-weighted class activation mapping (GradCam++)).

The remainder of the paper is organized as follows: in Section 2, data (collection, processing techniques and labeling) and
ethods (pipeline components) are described in detail; then, in Section 3, the results on the hazard index and landscape, its

onnection to scene composition, and intervention heuristic are presented and discussed. Finally, Section 4 summarizes the work
nd discusses possible gaps and lines of development.

. Materials and methods

In this Section we provide the details about the datasets and Deep Learning methods that are used throughout the work. For an
ntroduction to the Deep Learning paradigm, with a focus on transportation systems, we refer to Wang et al. (2019).

.1. Dataset collection and curation

To feed the proposed framework, we use two types of real urban data: historical accident statistics and street-level urban imagery.
In the case of Madrid and Barcelona, historical accident records for the years 2010–2018 are available from the open data portals

f the respective municipal governments (Ayuntamiento de Madrid, 2019; Ajuntament de Barcelona, 2019). For San Francisco, data
as available from 2015–2017 and it was filtered from the University of California, Berkeley’s Transport Injury Mapping System

TIMS) of California traffic accidents (Safe Transportation Research and Education Center, 2019). In total, the Barcelona dataset
as made up of 86,414 accidents, 10,240 being pedestrian and 76,174 being vehicle accidents. The Madrid dataset had 76,026
ccidents (12,533 pedestrian, 63,492 vehicle). In San Francisco, the dataset was made up of 15,492 accidents (3331 pedestrian,
2,161 vehicle). All data points are geolocated with their corresponding GPS coordinates. Besides location, due the detonating
auses may be different, we distinguish between accidents where a vehicle and a pedestrian were involved (simply ‘pedestrian’, or
, onwards), from vehicle-to-vehicle accidents (simply ‘vehicle’, or 𝑉 , onwards). The spatial distribution of empirical accident data

for both vehicles and pedestrians can be seen in the SI Figure S1.
Street-level imagery was extracted from two data sources. The Google StreetView (GSV) (Anguelov et al., 2010) API was used

for Barcelona and Madrid. In these dataset, images are, on average, 15 meters away from each other. As we wanted to capture the
view of the driver, we limited our queries to images facing directly down the direction of traffic of the street. The result of this
process was a comprehensive and homogeneous set of images for both cities.

For the city of San Francisco, images were provided by Mapillary (Mapillary contributors, 2019), a crowd-sourced alternative
to GSV. With Mapillary, all user-uploaded images are available under the CC-BY-SA license. As images are uploaded by private
individuals working with different equipment, different setup, different light conditions, different vehicles, and without central
coordination, several distinct challenges were presented by this dataset. Firstly, for each point provided, usually a single image was
available. Occasionally, this image did not fit our criteria of facing down the direction of traffic, and had to be discarded. Secondly,
data was only available from a smaller part of the city, corresponding to the area covered by the Mapillary contributors. The part
of San Francisco available in the dataset, consisting mostly of high-traffic streets, is shown in Figure S2 of the SI.

Combining data from different sources (GSV and Mapillary) allows us to test the robustness of our methods when dealing with
similar, but not equally distributed, data . All the collected images, both for GSV and Mapillary, contain GPS locations in their
metadata, which allows us to assign each street image a binary accident category (‘‘safe’’ vs. ‘‘dangerous’’). We categorize a point
as ‘‘dangerous’’ if one or more accidents have occurred with a 50 meter radius of its location. Otherwise, the point is categorized as
‘‘safe’’. More details on the creation of the image dataset can be found in Section S1 of the SI, along with a more extended discussion
of the trade-offs of using a radius to assign accidents to images in Section S4.

The large collection of images tagged according to accident category was divided in 6 different datasets, resulting from the
combination of the three targeted cities and two accident types (𝑉 and 𝑃 ). The characteristics of each dataset (number of images
er dataset and category) are detailed in Table 1.

Notice that the San Francisco datasets are much smaller than Barcelona and Madrid datasets. For the 6 datasets, data was
3
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Table 1
Image dataset properties. Comparing the relative proportion of points with and without accidents across the various cities. In all 3 cities, there
is a higher proportion of points with vehicle-to-vehicle accidents than vehicle-to-pedestrian accidents. Relatively less accident points in San
Francisco reflects the smaller amount of accident data for that city.
City Total Vehicle (𝑉 ) Pedestrian (𝑃 )

Accident No accident Accident No accident

Barcelona 177 645 61.8% 38.2% 48.1% 51.9%
Madrid 704 950 48.3% 51.7% 29.1% 70.9%
San Francisco 162 530 35.7% 64.3% 17.4% 82.6%

2.2. Hazard index estimation with Deep Learning

A variety of Deep Learning architectures have shown to be remarkably effective for many computer vision tasks (LeCun et al.,
015; Schmidhuber, 2015). In this work we use a Residual Neural Network (ResNet) (He et al., 2016a), a particular architecture of
onvolutional Neural Network (CNN), to estimate the hazard index (𝐻) in new, unseen images. The main characteristic of ResNets

s the implementation of ‘‘shortcut connections’’ that skip blocks of convolutional layers, allowing the network to learn residual
appings between layers that mitigate the vanishing gradients problem. For this critical step, all of the elements used were created

rom scratch – training and test datasets, weight learning stage, etc. – as is detailed in the following.
We define our hazard index (𝐻) as the probability that a target image is classified as ‘dangerous’ by the ResNet. For this objective,

e train the ResNet to first classify images between the two defined accident categories: ‘dangerous’ and ‘safe’. For each street-level
mage, the classifier delivers a value 𝐻 in the range of [0, 1]. When 𝐻 ≈ 1, the point where the image was taken is considered as

dangerous. On the contrary, when 𝐻 ≈ 0, the corresponding point is considered as safe. The hazard index is defined as the output
f the Softmax activation function (between 0 and 1) of the last layer of the classifier architecture:

𝐻 = 𝑒𝑧𝑖
∑𝐾

𝑗=0 𝑒
𝑧𝑗

(1)

where 𝑧 is the output logits of the last ResNet layer, 𝑖 is the index of ‘dangerous’ class and 𝐾 is the number of classes. 𝐻 can be
interpreted as the probability that the point related to a given image is hazardous.

To successfully train our ResNet architecture for the required classification task, we start with a pre-trained network that considers
the Imagenet dataset (Krizhevsky et al., 2012), and then, via ’Transfer learning’ techniques, we fine-tune the network using our data.
At this stage, we remove the connections from the last layer of the pre-trained ResNet model, replace it with a new layer with two
outputs (categories dangerous and safe), and randomly initialize the layer’s weights. We re-trained (fine-tuned) this last layer, leaving
the rest of the CNN static. To compensate for class imbalance during training stage, class weights were adjusted in the objective
cross entropy loss function according to inverse class frequency:

𝑤𝑖 =
1

𝑙𝑛(𝑐 + 𝑟𝑖)
(2)

with 𝑤𝑖 as the weight assigned to each class, 𝑐 is a parameter to control the range of the valid values, and 𝑟𝑖 is the ratio of the
number of samples from each class respect the total of samples, and then

𝐿𝑜𝑠𝑠 = 1
𝑁

𝑁
∑

𝑖=1
𝑤𝑖 ⋅ (𝑦𝑖 ⋅ 𝑙𝑜𝑔(𝑦𝑖) + (1 − 𝑦𝑖) ⋅ 𝑙𝑜𝑔(1 − 𝑦𝑖)) (3)

where 𝑁 is the number of samples, and 𝑦𝑖 and 𝑦𝑖 are the true label and the prediction for 𝑖 class, respectively. In accordance with
the defined accident types (𝑉 and 𝑃 ), we train our ResNet to estimate two subtypes of hazard index: 𝐻𝑉 and 𝐻𝑃 , corresponding to
the hazard indices for vehicle-to-vehicle and vehicle-to-pedestrian accidents, respectively. Therefore, we end up training 6 models
in total, two per city.

2.3. Hazard index interpretability

One of the main shortcomings of Deep Learning techniques is (the lack of) interpretability. Certainly, deep neural networks
can provide a high level of discriminative power, but at the cost of introducing many model variables, which eventually hinders
the interpretability of their black-box representations (Adadi and Berrada, 2018). This difficulty is especially pertinent in our case:
improving pedestrian safety sometimes demands changes in the urban landscape, the question being which changes are pertinent.
Here, we address this by using two different interpretability techniques. The first, scene disorder, is used to assess image complexity
and the second, Class Activation Mapping (CAM), to assess which areas are more informative for the estimation of the hazard index.
In particular, CAM methods have been recently shown to be successful for interpretability tasks in several fields (Fukui et al., 2019;
4
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Fig. 2. Illustrating the concept of scene disorder. Segmented images with low 𝑆𝐷 = 0.15 scene disorder (a); mild 𝑆𝐷 = 0.39 scene disorder (b); and high scene
disorder 𝑆𝐷 = 0.81 (c).

2.3.1. Urban scene segmentation and scene disorder
First, in order to identify what objects are in the scene, and where they are positioned, we use urban scene segmentation. The

goal of the semantic image segmentation task is to assign a category label to each pixel of an image. Segmentation provides a
comprehensive breakdown of the physical elements visible in the scene. It predicts the label, location and mask for each object.
For this task, we used a high-performance method called Pyramid Scene Parsing Network (PSPNet) (Zhao et al., 2017) architecture,
pre-trained with the Cityscapes dataset (Cordts et al., 2016). PSPNet is a state-of-the-art deep learning model that exploits the
capability of both global and local context information aggregation through several pyramid pooling layers. It has shown outstanding
performance on several semantic segmentation benchmarks. Cityscapes is a real-world, vehicle-egocentric dataset for semantic urban
scene understanding which contains 25K pixel-annotated images taken in different weather conditions. Images in Cityscapes are
annotated with 30 urban object categories, but we used a subset of those (19) in our image repository segmentation — those that
are common and relevant in driver-perspective scenes (e.g. ‘‘car’’, ‘‘road’’, ‘‘sidewalk’’, ‘‘person’’, ‘‘traffic light’’, etc.; see right-most
labels in Fig. 4).

On top of the image segmentation outcome, we propose a measure of scene disorder inspired by the gray-tone spatial-dependence
matrix (Haralick et al., 1973), also known as Gray-level co-occurrence matrix (GLCM), which captures the amount of transitions
between adjacent pixels labeled with different categories. It is known that complex images (related to scene disorder) may cause a
division of attention (Moray, 1959; Kahneman, 1973; Alvarez and Cavanagh, 2004; Richards, 2010) and, as a consequence, reduce
attention towards objects that are relevant to urban hazard.

Originally, GLCM characterizes the texture of an image by calculating how often pairs of pixels with specific values are adjacent
in a specified spatial configuration. In our measure of scene disorder, the frequency of pair of pixels of different values is calculated
over the segmented image, where the value of a pixel corresponds to an urban object category, instead of a gray intensity like the
usual GLCM. We perform the calculation as follows:

𝑆𝐷 =
𝑚
∑

𝑖=0

𝑛
∑

𝑗=0
𝛿 [𝐼(𝑖, 𝑗) ≠ 𝐼(𝑖 + 𝛥𝑖, 𝑗 + 𝛥𝑗)] (4)

where 𝛿[𝑥] is the Kronecker delta, valued 1 if the condition 𝑥 is met, and 0 otherwise; and 𝛥𝑖 and 𝛥𝑗 represent an offset of 1,
to compute the amount of pixel value transitions in two directions (right and below). With this definition, the measure 𝑆𝐷 is
incremented by 1 for every pair of neighboring pixels that have differing values. Examples of scene disorder measures can be seen
in Fig. 2.

2.3.2. Interpretability through Activation Mapping
Moving on to the second step of our interpretability process, Class Activation Mapping (CAM) (Zhou et al., 2016) and related

techniques (e.g. gradient-weighted class activation mapping (GradCAM++) Selvaraju et al., 2017; Chattopadhay et al., 2018) are
used to interpret, visually, the patterns of images that are informative of a specific image category (Ventura et al., 2017; Adadi and
Berrada, 2018), meaning, in our case, the regions that have influenced the most about the decision taken by the classifier for a
certain class, in our case, classifying an image as ‘dangerous’.

GradCAM++ was used to identify the regions of the image that are dangerous. Given an input image and a our trained CNN
model, GradCAM++ generates a localization map by the use of the gradient information of the specific target class ‘dangerous’ to
compute the target class weights of each feature map of the last convolutional layer of the CNN before the final classification. The
final localization map is synthesized from the aggregated sum of these target class weights. Generating a GradCAM++ map for the
‘dangerous’ class helps to visually identify the specific patterns and objects learned by the CNN in order to differentiate between ‘safe’
and ‘dangerous’ scenes. Since the images have been fully segmented, we can retrieve the objects that overlap with the dangerous
regions. Analyzing frequencies, we can recover what object categories are more relevant to determine 𝐻𝑉 or 𝐻𝑃 . Fig. 4 shows one
example per city in the first column and visualizations of the described techniques in the other columns. In particular, second and
third column display 𝐻𝑃 and 𝐻𝑉 , respectively, with the corresponding Class Activation Map. Areas in red color are those that are
more relevant to the hazard index, that is, areas that strongly contribute to increase the hazard indexes. Last column shows the
automatic segmentation of the images.
5
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Fig. 3. Image hazard reduction flowchart. Processing pipeline to improve the most hazardous parts of a street-level image 𝑖, comparing the new image with
similar partner images 𝑗, and arriving at a new 𝐻𝑃 and 𝐻𝑉 for the original image.

2.4. A greedy heuristic to improve 𝐻

The combination of the Class Activation Mapping and image segmentation described in the previous section gives us insight into
which regions and objects of a scene contribute most to its estimated hazard level. While this information is already relevant, it
provides users with no concrete recommendations for structural changes to the scene that might make it safer. Accordingly, as a
final step in the pipeline, we propose a strategy to exploit the large pool of images available in order to identify, for each scene,
realistic and potentially low-cost physical alterations that would diminish 𝐻𝑃 and 𝐻𝑉 the most.

To this end, we take advantage of the methodologies developed in the previous steps. On the one hand, the segmentation task
allows us to identify which objects among 𝐶 categories are present in a given scene (and to what extent). On the other, CAM
provides information regarding which regions of the scene contribute most to the estimated hazard score. With this information at
hand, for every image 𝑖 we build a vector of characteristics 𝑣𝑖 ∈ R𝐶 , containing information of the relative area of category 𝐶 in
𝑖. For the target scene (the one for which we intend to reduce the hazard levels), we construct an additional surrogate vector of
characteristics, �̃�𝑖, in which we discard those regions that contribute most to 𝐻𝑃 , i.e. we only consider regions of 𝑖 where the class
activation is mild-to-low (< 0.7), see first and second blocks in Fig. 3. Next, we deploy an exhaustive search to find the five mirror
images 𝑗 for �̃�𝑖, with their respective vectors of characteristics 𝑣𝑗 , such that their hazard index is lower:

argmin
𝑗

‖�̃�𝑖 − 𝑣𝑗‖2 (5)

𝐻 𝑗
𝑃 < 𝐻 𝑖

𝑃

𝐻 𝑗
𝑉 < 𝐻 𝑖

𝑉

In other words, we seek the most similar locations in the city that have smaller 𝐻𝑃 and 𝐻𝑉 than 𝑖, see Fig. 3 for a schematic
representation of the process. The search for mirror images is limited to structurally similar scenes (compared to the original one),
in order to promote simple and feasible interventions. We emphasize that this strategy is designed to be used in tandem with human
users, who will be able to judge which recommendations are realistic. The choice of five images allows for some diversity in the
range of interventions recommended.

Finally, we remark that our approach is very similar to the regressive 𝑘-nearest neighbor (𝑘-nn) algorithm (Harrington,
2012), as opposed to a more sophisticated, Deep Learning-based mechanism for image ‘‘safe-fication’’ (following the concept of
‘‘beautification’’ in Ref. Kauer et al., 2018). These techniques lie beyond the scope of the present work.

3. Experiments and results

3.1. Hazard index estimation

We begin the results section by assessing how well our trained ResNet performs the required classification task for the six datasets
we have defined, considering the cities of Barcelona, Madrid, and San Francisco. Images belonging to the ‘dangerous’ class are
defined as positive, while those belonging to the ‘safe’ class are defined as negative. In the training stage, the parameter 𝑐 of the
loss function was experimentally assigned as 1. For our results, we focus on the following measures: recall, precision and accuracy;
and the indicators: FP (False positives), TP (True Positives), TN (True Negatives) and FN (False negatives). Recall refers to the
fraction of samples detected as dangerous over the total number of dangerous samples in the dataset (TP over TP+FN). Precision is
the fraction of the true dangerous points detected, over the number of points detected as dangerous by the ResNet (TP over TP+FP).
Accuracy measures how good the system is at detecting dangerous points (TP+TN over all the samples).

As we can see in Table 2, the obtained accuracy is outstanding for all datasets, considering that the CNN training stage relies only
on visual information, along with a binary tag indicating the occurrence (or not) of an accident within a 50 m radius (sensitivity
with respect to radii is discussed in Section S4.1 and Figure S7 of the SI). As illustrated examples of hazard index estimation, see
the scores in the central columns of Fig. 4.

Additionally, we compared the performance of different ResNet and other state-of-the-art architectures against the Barcelona
dataset. Metrics like F1-score, area under the Precision and Recall (PR) curve, and the area under the Receiver Operating
6
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Table 2
Results of the deep learning approach for accident prediction, considering a 50 m radius. Rows labeled as 𝑃 and 𝑉 correspond to pedestrian-to-vehicle and
vehicle-to-vehicle accident dataset, respectively. Results for other radii can be seen on Table S1 of the SI.

Recall Prec. Acc. FP TP TN FN

Barcelona 𝑃 0.86 0.72 0.75 17.8% 45.4% 29.8% 7%
Barcelona 𝑉 0.77 0.84 0.82 7.1% 37.9% 44.1% 10.9%

Madrid 𝑃 0.76 0.75 0.75 12.4% 37.5% 38% 12.1%
Madrid 𝑉 0.73 0.74 0.75 12% 35.2% 40.1% 12.7%

San Francisco 𝑃 0.63 0.81 0.76 6.6% 29% 47.7% 16.7%
San Francisco 𝑉 0.61 0.82 0.74 6.3% 30.1% 44.7% 18.9%

Table 3
Results of the deep learning approach for accident prediction, considering different classification architectures.

Model Acc. Prec. Rec.l F1-score PR ROC

VGG16 (Simonyan and Zisserman, 2014) 0.61 0.58 0.96 0.72 0.78 0.59
VGG19 (Simonyan and Zisserman, 2014) 0.68 0.73 0.62 0.67 0.77 0.68
Inception-V3 (Szegedy et al., 2016) 0.70 0.70 0.75 0.72 0.79 0.70
Inception-V4 (Szegedy et al., 2017) 0.57 0.80 0.24 0.37 0.72 0.59
Mobilenet (Howard et al., 2017) 0.62 0.77 0.39 0.52 0.74 0.63
ResNet-v1-50 (He et al., 2016b) 0.61 0.80 0.35 0.49 0.75 0.63
ResNet-v1-101 (He et al., 2016b) 0.59 0.56 0.99 0.71 0.78 0.57
ResNet-v1-152 (He et al., 2016b) 0.67 0.71 0.62 0.66 0.76 0.67
ResNet-v2-50 (He et al., 2016a) 0.75 0.72 0.87 0.78 0.82 0.74
ResNet-v2-101 (He et al., 2016a) 0.72 0.75 0.70 0.72 0.80 0.72
ResNet-v2-152 (He et al., 2016a) 0.72 0.74 0.72 0.73 0.80 0.72

Characteristic (ROC) curve were used for comparison as well. The F1-measure provides a balance between precision and recall
in a single score:

𝐹1 = 2 ⋅
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(6)

Whereas the PR curve represents the balance between the measures precision and recall through different thresholds between 0
and 1. The ROC curve plots the false positive rate versus the true positive rate through different thresholds, like the PR curve. The
results presented in Table 3 show that the ResNet-v2-50 offers the highest performance for this particular image classification task.

Discerning between safe and dangerous locations in a binary fashion might be limiting in several practical scenarios, such as the
prioritization of urban interventions to improve pedestrian safety. To assess to what extent we can produce finer results, we have
also implemented the method in Frank and Hall (2001) to learn an ordinal regressor. In this case, the Barcelona pedestrian dataset
was divided in four rating classes: no-danger, mild-danger, danger and high-danger. Images tagged as ‘no-danger’, correspond those
mages where no accidents were observed. Images in the class ‘mild-danger’ had one accident nearby, images in class ‘danger’ have
etween 2 and 5 accidents nearby. Finally, images belonging to class ‘high-danger’ have more than 5 accidents in their vicinity. The
ataset proportions were approximately 85k, 34k, 40k and 17k images samples, respectively. The method in Frank and Hall (2001)
elies on several binary classifiers. We used our same ResNet architecture for each of those binary classifiers. After training, we
btained a balanced accuracy of 0.47 (with a dummy classifier accuracy of 0.25) which is comparable to the performance reported
n Song et al. (2018) for a similar task. That is, the ResNet architecture can also provide competitive results for a finer assessment
f pedestrian safety.

.2. Urban hazard landscape

The first remarkable outcome of the described methodology (in particular, Section 2.2) is a fine-grained map of hazard indices
hroughout the cities under study. The Deep Learning approach, together with the short distance intervals between consecutive
mages, allows us to quantify the safety of all city locations at a microscopic level, i.e. every 15 meters approximately (see Figures S3
nd S4 in the SI), independently of whether accidents have occurred at a given site or not.

To give a complete picture of hazard for pedestrians and vehicles, and to highlight their differences, Fig. 5 shows the spatial
istribution of points that were identified as very hazardous for pedestrians (𝐻𝑃 ≥ 0.66), but with low-to-moderate hazard for
ehicles (𝐻𝑉 < 0.66), and vice-versa. As can be seen, in both Madrid and Barcelona, areas of high hazard for pedestrians alone
re highly concentrated in the denser, older city centers. High levels of vehicle hazard tend to be distributed around arterial roads,
s well as some distinct neighborhoods (e.g. Sant Martí-Poble Nou, middle right corner in Barcelona). San Francisco presents an
nteresting case in which the two spatial distributions are nearly homogeneous. This can likely be explained by the bias towards
esidential, medium-density areas in our image coverage for the city (see Materials and Methods for further discussion). Notably,
e lacked image coverage in high-density downtown San Francisco, as well as peripheral low-density districts. With the inclusion of

uch zones, it is possible that clearer spatial patterns would emerge, although they might be distinct from those of denser European
7

ities like Barcelona and Madrid (Louf and Barthelemy, 2014). Nevertheless, it should be noted that competitive levels of precision
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Fig. 4. Deep Learning approach: classification, segmentation and interpretability. The figures display image examples from Barcelona, San Francisco and Madrid,
one location per row. First column shows the original street view image. Second and third columns correspond to the obtained CAM for pedestrian and vehicle
datasets, respectively. The last column corresponds to the outcome of the segmentation task. The example in Barcelona location (top row) is classified as dangerous
for pedestrians (note the score in each picture), but safe for vehicles. The second example, corresponding to a Madrid location, is classified as dangerous for
vehicles, but safe for pedestrians. Finally, the third example, corresponds to a San Francisco location. Notice that, in this last case, the location is dangerous
for both pedestrian and vehicle, but the CAM highlights different regions: areas increasing the hazard for pedestrians may not coincide with those increasing
hazard for vehicles. Images courtesy of Google, Inc. and Mapillary. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

and accuracy were still achieved in San Francisco, indicating that our method is robust to relatively homogeneous training data.
Furthermore, it shows that the classifier need not only be applied to comprehensive collections of images from an entire city, but
can function well on sufficiently rich, spatially homogeneous samples of images. Separate visualizations for pedestrian and vehicle
hazards are available in the SI, Figure S3.

Worth highlighting, there has been no previous attempt to associate a given street image with traffic hazard levels — unlike
other urban attributes (e.g. beauty Quercia et al., 2014; Naik et al., 2017, or security Naik et al., 2014). Here, we do so under
the assumption that street-level imagery is a good proxy for both the structural and perceptual complexity of the city landscape.
Typically, traffic-related risk is either aggregated to the macro-level (neighborhoods, census tracts, even counties) (Huang et al.,
2010; Ukkusuri et al., 2012; Chen and Zhou, 2016), or painstakingly micro-tailored to very specific settings (e.g. considering only
zebra-crossings Olszewski et al., 2016). However, initiatives like Vision Zero, involving governments and organizations worldwide,
demand new streams of data and methodologies that help address the street safety challenge at the finest level and at scale. This is
achieved here combining images and accident data.

3.3. Mapping safety to scene composition

The second (segmentation) and third (Class Activation Mapping, CAM) processing steps complete the data analysis pipeline,
linking hazard indices, 𝐻𝑃 and 𝐻𝑉 , to specific objects found in street-level images. In practice, such link is established combining the
information in the central and right columns of Fig. 4. Mapping each pixel label (e.g. ‘‘road’’, ‘‘sidewalk’’, etc.) to its corresponding
activation level (heatmap in central columns of Fig. 4) provides a quantification of the contribution of that pixel to the overall
hazard score of the image. Thus, at the city level, we can obtain a global perspective of the categories that most contribute to the
hazard index.

Fig. 6 (panels a and b) illustrates this for the central area of Barcelona. These radar plots show the level of object fixation of the
CAM model for pedestrians (a) and cars (b). In both cases, the blue line represents safe scenes (𝐻 < 0.33), while dangerous ones
(𝐻 > 0.66) are shown in red. Specifically, we plot the ratio between the amount of CAM fixation on a given category (in safe and
dangerous scenes), with respect to the CAM fixation on that category across all the images of the dataset. Thus, values below 1 in
8
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Fig. 5. Spatial distribution of hazard index. Distribution of high-hazard points for pedestrians and vehicles across all three cities of study. Points displayed are
those for which hazard is high for pedestrians (vehicles) but not for vehicles (pedestrians).

the radar plots are underrepresented, while those above 1 are overrepresented. We would like to highlight that we have restricted
the analysis to the city center, to avoid an exaggeration of the presence of natural elements (vegetation and sky) in low accident
risk images. Remarkably, the presence of people in a scene is correlated to a dangerous classification for both vehicle-to-pedestrian
and vehicle-to-vehicle predictions. Low buildings and/or wide streets (tantamount to a clear vision of the sky) correlate to safer
scenes for pedestrians, whereas the presence of buildings implies a safer environment for vehicles. Also, the absence of vegetation,
such as trees, could be contributing to a safe classification for vehicles.

Radar plots for Madrid (see SI, Fig. S5) show high resemblance to the Barcelona ones, while those for San Francisco (Fig. S6)
show completely different patterns: for pedestrians, the presence of sidewalks – and not people – is identified as the strongest driver
for high 𝐻𝑃 . Again, the distinct layouts and walking habits of European and North American cities may be directly related to these
emergent patterns.

Moving further, we can relate hazard levels to the scene complexity. While the radar plots show interesting information, they
are blind to specific scene compositions in urban scenes, i.e. whether categories appear in a clustered or fragmented way. To grasp
this information, we quantify scene disorder (𝑆𝐷) as defined in Eq. (4), see Methods above. Fig. 6c shows an hexbin scatter plot of
hazard indices (𝐻𝑉 against 𝐻𝑃 ), with a color-coded third dimension that corresponds to scene disorder, normalized in the range
[0, 1]. A first observation is that 𝐻𝑃 and 𝐻𝑉 are positively correlated. More interestingly, it is clear that more complex scenes
(warmer colors) correspond to more dangerous ones. In Figure S5c of the SI, an even clearer trend is shown for Madrid. On the
other hand, the level of disorder in San Francisco scenes is high when 𝐻𝑃 ≈ 𝐻𝑉 ≈ 1, but not clearly related to either 𝐻𝑃 or 𝐻𝑉 for
the rest of values, see Figure S6c. All in all, the connection between image complexity and hazard (especially for vehicles) suggests
that more research is needed in this direction. While certain distractions are very explicit (e.g. attending the mobile phone), the
perils of scene disorder are subtle and implicit (in the sense that they are not obvious on visual inspection).
9
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Fig. 6. Hazard level interpretability. Top: Radar plots showing the level of object fixation of the CAM model for pedestrian (a) and cars (b). For both, the blue
area corresponds to images classified as safe (𝐻 < 0.33), while scenes classified as dangerous (𝐻 > 0.66) are mapped on the plot as red. To build these radars,
each individual image is mapped to the radar categories (a relevant subset of those detected by the segmentation task), and the average of such mappings is
shown. (c) The plot shows the triple relationship between 𝐻𝑃 , 𝐻𝑉 and the color-coded level of disorder (adapted from Haralick et al., 1973) –which increases
towards warmer colors as the levels of hazard increase. The plot corresponds to Barcelona. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

3.4. An informed guide to pedestrian safety improvements

A precipitate analysis of Fig. 6 may render unfeasible interventions: substitution of built space with larger green areas, building
height reduction, or street widening would suffice to improve pedestrian safety, but they do not represent a realistic approach.
Instead, we resort on the greedy strategy developed in Section 2.4 to propose interventions conducive to scene alterations that
diminish 𝐻𝑃 and 𝐻𝑉 most.

Fig. 7a shows the results of the application of this optimization to the set of images in Barcelona (Figure S8 in SI for Madrid and
San Francisco). In some occasions the hazard index cannot be reduced (points near the (1, 1) coordinate). And yet, many locations
present a potential to decrease the hazard levels, even observing, for some scenarios, extreme improvements (points near the (0, 0)
coordinate). The gray intensity in Fig. 7a reflects the density of observations in that area. To provide a baseline for comparison,
panel b shows alternative results considering a dummy 𝑘-nn regressor, that does not take our hazard index into account. Ratios
larger than 1 indicate an increase in 𝐻𝑉 or 𝐻𝑃 , and ratios lower than 1 indicate a decrease. The average in both dimensions is
close to zero, evidencing that, with a dummy regressor, we have no guarantee of reducing either pedestrian or vehicle hazard.
Fig. 7c shows a selection of two targets and their most similar mirror image, illustrating some common interventions proposed by
the heuristic (more examples, for the three cities under study, can be found in Figure S9 of the SI). Visually, all of them seem to
point at simplifications of the original image — mostly removing objects on sidewalks.

Finally, Fig. 7d provides a visual overview of the most frequent interventions predicted by our optimization scheme, in the case
of Barcelona. The color of the link connecting two categories expresses the source of that link. The most notable changes point –
perhaps unsurprisingly – to the need to reconfigure urban scenes towards greener and wider spaces: indeed, both categories ‘road’
and ‘building’ contribute largely to ‘nature’, while the latter does the same towards ‘sky’. Madrid presents an almost identical trend,
while San Francisco shows a less clear pattern (although the relevance of ‘nature’ and ‘sky’ is still clear). Both diagrams are available
in the SI, Figure S10. Overall, the estimations and insights from the panels in Fig. 7 can provide initial indications to urban planners
about achieving potential reductions of a local hazard score, both in terms of which items could be removed or relocated.

4. Discussion

As cities become increasingly populated, the interactions among pedestrians and motorized vehicles become permanent. This
translates into a growing number of pedestrian–vehicle accidents. Complementary to the efforts by urban planners, public authorities
and sensor technology designers, we present here an automated scheme that exploits a wide range of Computer Vision methods
(classification, segmentation and interpretability techniques) to reduce traffic-related fatalities. The proposed processing pipeline,
conveniently fed with rich sources of open data, renders an holistic characterization of a city’s hazard landscape, capturing the
physical (scene structure) and perceptual (scene complexity) characteristics from a car driver’s point of view. Beyond its informative
value, the hazard landscape provides actionable insights to planners.

The main strength of our proposal lies in its simplicity, and its potentially universal applicability out of a comprehensive street
image collection and a rich accident dataset. Even crowd-sourced imagery, which is unavoidably diverse and often sparse, provides
a solid starting point to quantify safety at a below-segment level. A global, automated, data-driven endeavor towards improving
pedestrian safety is not out of reach, considering the advances in cities’ public data portals, and the wide coverage of proprietary
services like Google Street View or open initiatives like Mapillary.

Our approach opens a promising line of development. The hazard landscape is defined at an unprecedented, sub-segment
resolution level – roughly a hazard score every 15 meters – through an automated and scalable classification process. This is
well beyond macroscale approaches (e.g. crash hotspots), and extends the emphasis on intersections (Hu et al., 2018). Such fine-
10
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Fig. 7. Hazard reduction: results. (a) Expected improvement for pedestrian and vehicle hazards, with respect to their original values. The horizontal axis
corresponds to the ratio between the improved and the original pedestrian hazard index, �̃�𝑃 ∕𝐻𝑃 ; while the vertical axis represents the equivalent ratio for
vehicles, �̃�𝑉 ∕𝐻𝑉 . Gray intensity represents the density of observations in a given area of the plot. (b) Expected improvement of a dummy 𝑘-nn algorithm that
only considers similarity between images. This can be regarded as a baseline for results in panel (a) (c) Examples of original and mirror images in Barcelona
and Madrid. (d) Chord diagram representing an aggregate overview of proposed interventions in Barcelona. The most notable outcome from the diagram is the
propensity to reduce the space allotted to roads and buildings, exchanging it emptier, greener scenes.

underground transportation systems, crime, etc.– enabling better route design: safe paths, along with clean, beautiful, or shortest
ones.

Additionally, segmentation and interpretability methods unveil the relationship between potential danger and specific objects
in urban scenes. What is more, the disposition of those objects is related to hazard indices, adding a perceptual–attentional
link to other possible concomitant variables that affect vehicle and pedestrian safety. Along this line, our work can be used
in conjunction with other similar pipelines, such as Song et al. (2018), which automates road safety assessment in terms of
infrastructure and estimates road attributes, or may contribute to more focused analysis, relating what a person pays attention
to while driving (Palazzi et al., 2018). Additionally, further information such as temporal accident data, or factors known to
influence accident rate (e.g. weather, lighting condition, distraction, asphalt conditions, road signaling) could be included by using,
for instance, a multi-branch convolutional neural network, to obtain a richer prediction model.

On the other hand, the step from descriptive (hazard landscape) to actionable insights paves the way to automatized, computer-
aided prioritization of urban interventions. The proposed heuristic towards safety improvements can serve as a novel tool for
planners and policy makers, and might trigger the development of more sophisticated approaches such as the use of Generative
Adversarial Networks to produce virtual, plausible alternatives to target scenes (seeking for instance ‘‘safe-fication’’, instead of
‘‘beautification’’ Kauer et al., 2018). These techniques could be complemented with intervention cost quantification, considering
as well cost-safety gain trade-offs.
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